Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Alzheimers Res Ther ; 15(1): 70, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013590

RESUMO

BACKGROUND: There is a need for a reliable, easy-to-use, widely available, and validated tool for timely cognitive impairment identification. We created a computerized cognitive screening tool (Santé-Cerveau digital tool (SCD-T)) including validated questionnaires and the following neuropsychological tests: 5 Word Test (5-WT) for episodic memory, Trail Making Test (TMT) for executive functions, and a number coding test (NCT) adapted from the Digit Symbol Substitution Test for global intellectual efficiency. This study aimed to evaluate the performance of SCD-T to identify cognitive deficit and to determine its usability. METHODS: Three groups were constituted including 65 elderly Controls, 64 patients with neurodegenerative diseases (NDG): 50 AD and 14 non-AD, and 20 post-COVID-19 patients. The minimum MMSE score for inclusion was 20. Association between computerized SCD-T cognitive tests and their standard equivalent was assessed using Pearson's correlation coefficients. Two algorithms (a simple clinician-guided algorithm involving the 5-WT and the NCT; and a machine learning classifier based on 8 scores from the SCD-T tests extracted from a multiple logistic regression model, and data from the SCD-T questionnaires) were evaluated. The acceptability of SCD-T was investigated through a questionnaire and scale. RESULTS: AD and non-AD participants were older (mean ± standard deviation (SD): 72.61 ± 6.79 vs 69.91 ± 4.86 years old, p = 0.011) and had a lower MMSE score (Mean difference estimate ± standard error: 1.74 ± 0.14, p < 0.001) than Controls; post-COVID-19 patients were younger than Controls (mean ± SD: 45.07 ± 11.36 years old, p < 0.001). All the computerized SCD-T cognitive tests were significantly associated with their reference version. In the pooled Controls and NDG group, the correlation coefficient was 0.84 for verbal memory, -0.60 for executive functions, and 0.72 for global intellectual efficiency. The clinician-guided algorithm demonstrated 94.4% ± 3.8% sensitivity and 80.5% ± 8.7% specificity, and the machine learning classifier 96.8% ± 3.9% sensitivity and 90.7% ± 5.8% specificity. The acceptability of SCD-T was good to excellent. CONCLUSIONS: We demonstrate the high accuracy of SCD-T in screening cognitive disorders and its good acceptance even in individuals with prodromal and mild dementia stages. SCD-T would be useful in primary care to faster refer subjects with significant cognitive impairment (and limit unnecessary referrals) to specialized consultation, improve the AD care pathway and the pre-screening in clinical trials.


Assuntos
Doença de Alzheimer , COVID-19 , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Idoso , Adulto , Pessoa de Meia-Idade , COVID-19/complicações , Transtornos Cognitivos/diagnóstico , Disfunção Cognitiva/psicologia , Testes Neuropsicológicos , Cognição , Doença de Alzheimer/diagnóstico
2.
Neurobiol Aging ; 83: 42-53, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31585366

RESUMO

Alzheimer's disease (AD) neuropathology is extremely heterogeneous, and the evolution from preclinical to mild cognitive impairment until dementia is driven by interacting genetic/biological mechanisms not fully captured by current clinical/research criteria. We characterized the heterogeneous "construct" of AD through a cerebrospinal fluid biomarker-guided stratification approach. We analyzed 5 validated pathophysiological cerebrospinal fluid biomarkers (Aß1-42, t-tau, p-tau181, NFL, YKL-40) in 113 participants (healthy controls [N = 20], subjective memory complainers [N = 36], mild cognitive impairment [N = 20], and AD dementia [N = 37], age: 66.7 ± 10.4, 70.4 ± 7.7, 71.7 ± 8.4, 76.2 ± 3.5 years [mean ± SD], respectively) using Density-Based Spatial Clustering of Applications with Noise, which does not require a priori determination of the number of clusters. We found 5 distinct clusters (sizes: N = 38, 16, 24, 14, and 21) whose composition was independent of phenotypical groups. Two clusters showed biomarker profiles linked to neurodegenerative processes not associated with classical AD-related pathophysiology. One cluster was characterized by the neuroinflammation biomarker YKL-40. Combining nonlinear data aggregation with informative biomarkers can generate novel patient strata which are representative of cellular/molecular pathophysiology and may aid in predicting disease evolution and mechanistic drug response.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fatores de Risco
3.
J Alzheimers Dis ; 64(s1): S47-S105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29562524

RESUMO

The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Medicina de Precisão , Animais , Encéfalo/diagnóstico por imagem , Humanos , Neurologia , Neurofisiologia , Biologia de Sistemas , Pesquisa Translacional Biomédica
4.
Lancet Neurol ; 17(4): 335-346, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29500152

RESUMO

BACKGROUND: Improved understanding is needed of risk factors and markers of disease progression in preclinical Alzheimer's disease. We assessed associations between brain ß-amyloidosis and various cognitive and neuroimaging parameters with progression of cognitive decline in individuals with preclinical Alzheimer's disease. METHODS: The INSIGHT-preAD is an ongoing single-centre observational study at the Salpêtrière Hospital, Paris, France. Eligible participants were age 70-85 years with subjective memory complaints but unimpaired cognition and memory (Mini-Mental State Examination [MMSE] score ≥27, Clinical Dementia Rating score 0, and Free and Cued Selective Reminding Test [FCSRT] total recall score ≥41). We stratified participants by brain amyloid ß deposition on 18F-florbetapir PET (positive or negative) at baseline. All patients underwent baseline assessments of demographic, cognitive, and psychobehavioural, characteristics, APOE ε4 allele carrier status, brain structure and function on MRI, brain glucose-metabolism on 18F-fluorodeoxyglucose (18F-FDG) PET, and event-related potentials on electroencephalograms (EEGs). Actigraphy and CSF investigations were optional. Participants were followed up with clinical, cognitive, and psychobehavioural assessments every 6 months, neuropsychological assessments, EEG, and actigraphy every 12 months, and MRI, and 18F-FDG and 18F-florbetapir PET every 24 months. We assessed associations of amyloid ß deposition status with test outcomes at baseline and 24 months, and with clinical status at 30 months. Progression to prodromal Alzheimer's disease was defined as an amnestic syndrome of the hippocampal type. FINDINGS: From May 25, 2013, to Jan 20, 2015, we enrolled 318 participants with a mean age of 76·0 years (SD 3·5). The mean baseline MMSE score was 28·67 (SD 0·96), and the mean level of education was high (score >6 [SD 2] on a scale of 1-8, where 1=infant school and 8=higher education). 88 (28%) of 318 participants showed amyloid ß deposition and the remainder did not. The amyloid ß subgroups did not differ for any psychobehavioural, cognitive, actigraphy, and structural and functional neuroimaging results after adjustment for age, sex, and level of education More participants positive for amyloid ß deposition had the APOE ε4 allele (33 [38%] vs 29 [13%], p<0·0001). Amyloid ß1-42 concentration in CSF significantly correlated with mean 18F-florbetapir uptake at baseline (r=-0·62, p<0·0001) and the ratio of amyloid ß1-42 to amyloid ß1-40 (r=-0·61, p<0·0001), and identified amyloid ß deposition status with high accuracy (mean area under the curve values 0·89, 95% CI 0·80-0·98 and 0·84, 0·72-0·96, respectively). No difference was seen in MMSE (28·3 [SD 2·0] vs 28·9 [1·2], p=0·16) and Clinical Dementia Rating scores (0·06 [0·2] vs 0·05 [0·3]; p=0·79) at 30 months (n=274) between participants positive or negative for amyloid ß. Four participants (all positive for amyloid ß deposition at baseline) progressed to prodromal Alzheimer's disease. They were older than other participants positive for amyloid ß deposition at baseline (mean 80·2 years [SD 4·1] vs 76·8 years [SD 3·4]) and had greater 18F-florbetapir uptake at baseline (mean standard uptake value ratio 1·46 [SD 0·16] vs 1·02 [SD 0·20]), and more were carriers of the APOE ε4 allele (three [75%] of four vs 33 [39%] of 83). They also had mild executive dysfunction at baseline (mean FCSRT free recall score 21·25 [SD 2·75] vs 29·08 [5·44] and Frontal Assessment Battery total score 13·25 [1·50] vs 16·05 [1·68]). INTERPRETATION: Brain ß-amyloidosis alone did not predict progression to prodromal Alzheimer's disease within 30 months. Longer follow-up is needed to establish whether this finding remains consistent. FUNDING: Institut Hospitalo-Universitaire and Institut du Cerveau et de la Moelle Epinière (IHU-A-ICM), Ministry of Research, Fondation Plan Alzheimer, Pfizer, and Avid.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Fatores de Risco
5.
Pharmacol Res ; 130: 331-365, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29458203

RESUMO

The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Medicina de Precisão , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Biomarcadores/sangue , Descoberta de Drogas , Humanos , Proteínas tau/antagonistas & inibidores
6.
Alzheimers Dement ; 14(4): 492-501, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29328927

RESUMO

INTRODUCTION: The diagnostic and classificatory performances of all combinations of three core (amyloid ß peptide [i.e., Aß1-42], total tau [t-tau], and phosphorylated tau) and three novel (neurofilament light chain protein, neurogranin, and YKL-40) cerebrospinal fluid biomarkers of neurodegeneration were compared among individuals with mild cognitive impairment (n = 41), Alzheimer's disease dementia (ADD; n = 35), frontotemporal dementia (FTD; n = 9), and cognitively healthy controls (HC; n = 21), using 10-fold cross-validation. METHODS: The combinations ranking in the top 10 according to diagnostic accuracy in differentiating between distinct diagnostic categories were identified. RESULTS: The single biomarkers or biomarker combinations generating the best area under the receiver operating characteristics (AUROCs) were the following: the combination [amyloid ß peptide + phosphorylated tau + neurofilament light chain] for distinguishing between ADD patients and HC (AUROC = 0.86), t-tau for distinguishing between ADD and FTD patients (AUROC = 0.82), and t-tau for distinguishing between FTD patients and HC (AUROC = 0.78). CONCLUSIONS: Novel and established cerebrospinal fluid markers perform with at least fair accuracy in the discrimination between ADD and FTD. The classification of mild cognitive impairment individuals was poor.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/classificação , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Área Sob a Curva , Biomarcadores/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/classificação , Estudos Transversais , Diagnóstico Diferencial , Feminino , Demência Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/classificação , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas Nucleares/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas de Ligação a RNA , Curva ROC , Estudos Retrospectivos , Proteínas tau/líquido cefalorraquidiano
7.
Alzheimers Dement ; 13(4): 454-467, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188032

RESUMO

Preclinical Alzheimer's disease (AD) is a relatively recent concept describing an entity characterized by the presence of a pathophysiological biomarker signature characteristic for AD in the absence of specific clinical symptoms. There is rising interest in the scientific community to define such an early target population mainly because of failures of all recent clinical trials despite evidence of biological effects on brain amyloidosis for some compounds. A conceptual framework has recently been proposed for this preclinical phase of AD. However, few data exist on this silent stage of AD. We performed a systematic review to investigate how the concept is defined across studies. The review highlights the substantial heterogeneity concerning the three main determinants of preclinical AD: "normal cognition," "cognitive decline," and "AD pathophysiological signature." We emphasize the need for a harmonized nomenclature of the preclinical AD concept and standardized population-based and case-control studies using unified operationalized criteria.


Assuntos
Doença de Alzheimer/metabolismo , Sintomas Prodrômicos , Doença de Alzheimer/classificação , Doença de Alzheimer/diagnóstico , Biomarcadores/metabolismo , Humanos , Terminologia como Assunto
8.
Alzheimers Dement ; 12(3): 292-323, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27012484

RESUMO

During the past decade, a conceptual shift occurred in the field of Alzheimer's disease (AD) considering the disease as a continuum. Thanks to evolving biomarker research and substantial discoveries, it is now possible to identify the disease even at the preclinical stage before the occurrence of the first clinical symptoms. This preclinical stage of AD has become a major research focus as the field postulates that early intervention may offer the best chance of therapeutic success. To date, very little evidence is established on this "silent" stage of the disease. A clarification is needed about the definitions and lexicon, the limits, the natural history, the markers of progression, and the ethical consequence of detecting the disease at this asymptomatic stage. This article is aimed at addressing all the different issues by providing for each of them an updated review of the literature and evidence, with practical recommendations.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Animais , Encéfalo/diagnóstico por imagem , Progressão da Doença , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...